МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Алтайского края Комитет по образованию Зонального района Алтайского края МКОУ Луговская СОШ Зонального района Алтайского края

Рассмотрено

методическим

объединением

естественно-

математических наук

Жие Маркова Н.М.

Протокол № 4

Oт « W » ____ 03 __ 2023 г.

Согласовано

Заместитель директора

по УВР

Соболева П.В.

Утверждено

И.о. директора

Левкина Ю.В.

Протокол №

От «21» _ 03 _ 2023 гг

2023 г.

Рабочая программа учебного предмета «Физика»

для 10 класса основного общего образования на 2023-2024 год

> Составитель: Казанцева Марина Васильевна учитель физики

Пояснительная записка

Настоящая рабочая программа учебного предмета «Физика» для 10 класса составлена на основе основной образовательной программы ФГОС СОО МКОУ Луговской СОШ и авторской программы Г.Я. Мякишева, Б.Б.Буховцева, Н.Н.Сотского, В.М.Чаругина под редакцией Н.А. Парфентьевой - М., Просвещение, 2017год.

Место предмета в учебном плане.

Данная рабочая программа по физике для базового уровня составлена из расчета 68 ч за год обучения, по 2 часа в неделю.

Контрольных работ – 4

Лабораторных работ -8

Данная программа по физике основного общего образования разработана в соответствии с требованиями обновлённого Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО) и с учётом Примерной основной образовательной программы основного общего образования (ПООП ООО).

Программа разработана в соответствии с учебным планом МКОУ Луговской СОШ для уровня основного общего образования с использованием современного оборудования центра естественно-научной и технологической направленности «Точка роста».

На базе центра «Точка роста» обеспечивается реализация образовательных программ естественно-научной и технологической направленностей, разработанных в соответствии с требованиями законодательства в сфере образования и с учётом методических рекомендаций «Центр просветительских инициатив Министерства просвещение»

Использование оборудования центра «Точка роста» при реализации данной рабочей программы позволяет создать условия:

- для расширения содержания школьного физического образования;
- для повышения познавательной активности обучающихся в естественно-научной области;
- для развития личности ребенка в процессе обучения физики, его способностей, формирования и удовлетворения социально значимых интересов и потребностей;
- для работы с одарёнными школьниками, организации их развития в различных областях образовательной, творческой деятельности.

Изучение физики является необходимым не только для овладения основами одной из естественных наук, являющейся компонентой общего образования. Знание физики в её историческом развитии помогает человеку понять процесс формирования других составляющих современной культуры. Гуманитарное значение физики как составной части общего образования состоит в том, что она способствует становлению миропонимания и развитию научного способа мышления, позволяющего объективно оценивать сведения об окружающем мире. Кроме того, овладение основными физическими знаниями на базовом уровне необходимо практически каждому человеку в современной жизни.

Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не столько передаче суммы готовых знаний, сколько знакомству

с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Цели изучения физики в средней (полной) школе:

- формирование у обучающихся уверенности в ценности образования, значимости физических знаний для каждого человека, независимо от его профессиональной деятельности;
- овладение основополагающими физическими закономерностями, законами и теориями; расширение объёма используемых физических понятий, терминологии и символики;
- приобретение знаний о фундаментальных физических законах, лежащих в основе современной физической картины мира, о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; понимание физической сущности явлений, наблюдаемых во Вселенной;
- овладение основными методами научного познания природы, используемыми в физике: наблюдение, описание, измерение, выдвижение гипотез, проведение эксперимента; овладение умениями обрабатывать данные эксперимента, объяснять полученные

результаты, устанавливать зависимости между физическими величинами в наблюдаемом явлении, делать выводы;

- отработка умения решать физические задачи разного уровня сложности;
- приобретение опыта разнообразной деятельности, опыта познания и самопознания; умений ставить задачи, решать проблемы, принимать решения, искать, анализировать и обрабатывать информацию; ключевых навыков (ключевых компетенций), имеющих универсальное значение: коммуникативных навыков, навыков сотрудничества, навыков измерений, навыков эффективного и безопасного использования различных технических устройств;
- освоение способов использования физических знаний для решения практических задач, для объяснения явлений окружающей действительности, для обеспечения безопасности жизни и охраны природы;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний с использованием различных источников информации и современных информационных технологий; умений формулировать и обосновывать собственную позицию по отношению к физической информации, получаемой из разных источников;
 - воспитание уважительного отношения к учёным и их открытиям; чувства гордости за российскую физическую науку.

Содержание учебного предмета

Физика и методы научного познания

Физика — фундаментальная наука о природе. Научный метод познания. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Научные факты и гипотезы. Физический закон и границы их применимости. Физические теории и принцип соответствия. Физические величины. Погрешности измерений физических величин. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика.

Границы применимости классической механики. Пространство и время. Относительность механического движения. Системы отсчета. Скалярные и векторные физические величины. Траектория. Путь. Перемещение. Скорость. Ускорение. Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности.

Взаимодействие тел. Явление инерции. Сила. Масса. Инерциальные системы отсчета. Законы динамики Ньютона. Сила тяжести, вес, невесомость. Сила упругости, сила трения. Законы: всемирного тяготения, Гука, трения. Использование законов механики для объяснения движения небесных тел и для развития космических исследований.

Импульс материальной точки и системы. Импульс силы. Закон сохранения импульса. Механическая работа. Мощность. Механическая энергия материальной точки и системы. Закон сохранения механической энергии. Работа силы тяжести и упругости.

Равновесие материальной точки и твердого тела. Момент силы. Условия равновесия жидкости и газа. Давление. Движение жидкости.

Молекулярная физика и термодинамика.

Молекулярно – кинетическая теория (МКТ) строения вещества и её экспериментальные доказательства. Тепловое равновесие. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Уравнение Менделеева – Клапейрона. Газовые законы.

Агрегатные состояния вещества. Взаимные превращения жидкости и газа. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Кристаллические и аморфные тела.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Уравнение теплового баланса. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия и КПД тепловых машин.

Основы электродинамики.

Электрические заряды. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряжённость и потенциал электростатического поля. Линии напряжённости и эквипотенциальные поверхности. Принцип суперпозиции полей. Проводники и диэлектрики в электрическом поле. Электроёмкость. Конденсатор.

Постоянный электрический ток. Сила тока. Сопротивление. Последовательное и параллельное соединение проводников. Закон Джоуля – Ленца. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. Сверхпроводимость.

No	Название тем	Количество отводимых часов	В том числе количество контрольных работ	В том числе количество лабораторных работ
1	Физика и методы научного познания	1	-	-
2	Механика	29	2	5
3	Молекулярная физика и термодинамика	18	1	1
4	Основы электродинамики	17	1	2
	Резерв	3	-	-
	ИТОГО	68	4	8

Резервное время использовано для увеличения времени на изучение отдельных тем курса физики в количестве 4 часов.

Календарно-тематическое планирование

<u>No/No</u>	Наименования разделов/темы уроков	
1	Физика и естественнонаучный метод познания природы (1ч)	Использован ие оборудовани я « Точка роста
	Физика и познание мира. Инструктаж по охране труда на рабочем месте.	роста
	Механика (27 ч)	
	Кинематика (6 часов)	
2	Равномерное прямолинейное движение и его описание. Решение задач по теме «Прямолинейное равномерное движение»	
3	Мгновенная скорость. Ускорение. Движение с постоянным ускорением.	
4	Решение задач по теме «Прямолинейное равноускоренное движение»	
5	Равномерное движение точки по окружности. Кинематика абсолютно твердого тела.	
6	Лабораторная работа №1 «Изучение движения тела по окружности»	Датчик движения
7	Кинематика. Контрольная работа №1	
	Законы динамики Ньютона (4 часа)	
8	Взаимодействие тел в природе. Явление инерции. Инерциальные системы отсчета. Первый закон Ньютона.	
9	Понятие силы как меры взаимодействия тел. Второй закон Ньютона.	
10	Третий закон Ньютона. Геоцентрическая система отсчета.	
11	Решение задач по теме «Законы Ньютона»	
	Силы в механике (5 часов)	
12	Явление тяготения. Гравитационные силы. Закон Всемирного тяготения. Вес тела. Невесомость.	
13	Силы упругости. Закон Гука.	
14	Лабораторная работа №2 «Измерение жёсткости пружины»	динамомет р
15	Сила трения. Лабораторная работа №3 «Измерение коэффициента трения скольжения»	динамомет р
16	Решение задач по теме «Движение тела под действием нескольких сил»	
	Закон сохранения импульса (3 часа)	
17	Импульс материальной точки. Импульс силы	

18	Закон сохранения импульса. Реактивное движение.	1
19		
19	Решение задач на закон сохранения импульса	
20	Закон сохранения механической энергии (4 часа)	
20	Работа силы. Мощность. Механическая энергия тела: потенциальная и кинетическая.	
21	Закон сохранения энергии в механике. Решение задач по теме «Законы сохранения в механике»	T
22	Лабораторная работа №4 «Изучение закона сохранения механической энергии»	Датчик энергии
23	Динамика. Законы сохранения в механике. Контрольная работа №2	
	Статика (3 часа)	
24	Равновесие материальной точки и твердого тела.	
25	Виды равновесия. Условия равновесия.	
26	Лабораторная работа №5 «Изучение равновесия тела под действием нескольких сил»	динамомет р
	Основы гидромеханики (2 часа)	
27	Давление. Закон Паскаля. Равновесие жидкости и газа	
28	Закон Архимеда. Плавание тел	
	Молекулярная физика и термодинамика (17 ч)	
	Основы молекулярно-кинетической теории (3 часа)	
29	Строение вещества. Молекула. Основные положения МКТ. Экспериментальные доказательства основных положений МКТ. Броуновское движение.	
30	Масса молекул. Количество вещества. Силы взаимодействия молекул. Строение жидких, твердых, газообразных тел.	
31	Идеальный газ в МКТ. Основное уравнение МКТ.	
	Уравнения состояния газа (4 часа)	
32	Температура. Абсолютная температура. Температура – мера средней кинетической энергии движения молекул.	
33	Уравнение состояния идеального газа.	
34	Газовые законы. Решение задач по теме «Уравнение состояния идеального газа. Газовые законы»	
35	Лабораторная работа №6. «Опытная поверка закона Гей-Люссака»	Датчик давления
	Взаимные превращения жидкости и газа(1час)	
36	Насыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение. Испарение жидкости.	

	Влажность воздуха и ее измерение	
	Жидкости (1 час)	
37	Модель строения жидкости. Поверхностное натяжение.	
	Твёрдые тела(1 час)	
38	Кристаллические и аморфные тела. Механические свойства твёрдых тел	
	Основы термодинамики (7 часов)	
39	Внутренняя энергия. Работа в термодинамике.	
40	Количество теплоты. Удельная теплоемкость.	
41	Первый закон термодинамики. Решение задач на первый закон термодинамики	
42	Необратимость процессов в природе	
43	Принцип действия и КПД тепловых двигателей.	
44	Решение задач по теме «Молекулярная физика. Термодинамика»	
45	Молекулярная физика. Термодинамика.	
	Контрольная работа №3	
	Основы электродинамики (16 часов)	
	Электростатика (6 часов)	
46	Электрический заряд и элементарные частицы. Закон сохранения электрического заряда. Закон	
	Кулона.	
47	Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей.	
	Силовые линии	
10	электрического поля	
48	Потенциальная энергия заряженного тела в однородном электростатическом поле	
49	Потенциал электростатического поля. Разность потенциалов. Связь между напряженностью и напряжением.	
50	Решение задач на нахождение потенциальной энергии, работы электрического поля	
51	Электроёмкость. Конденсаторы.	
	Законы постоянного тока (6 часов)	
52	Электрический ток. Условия, необходимые для его существования. Закон Ома для участка цепи.	
	Последовательное и параллельное соединения проводников	
53	Лабораторная работа №7. «Изучение последовательного и параллельного соединения	Датчик
	проводников»	напряжения
54	Работа и мощность постоянного тока. Закон Джоуля – Ленца.	
55	Электродвижущая сила. Закон Ома для полной цепи	
56	Лабораторная работа №8. «Измерение ЭДС и внутреннего сопротивления источника тока»	Датчик силы

		тока
57	Электростатика. Законы постоянного тока. Контрольная работа №4	
	Электрический ток в различных средах (4 часа)	
58	Электрическая проводимость различных веществ. Зависимость сопротивления проводника от	
	температуры.	
	Сверхпроводимость	
59	Электрический ток в полупроводниках. Применение полупроводниковых приборов	
60	Электрический ток в вакууме. Электронно-лучевая трубка	
61	Электрический ток в жидкостях. Закон электролиза. Электрический ток в газах.	
	Несамостоятельный и	
	самостоятельный разряды.	
62-68	Резерв	

Результаты освоения учебного предмета

Личностные результаты:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях обустройстве мира и общества; готовность к научнотехническому творчеству
- чувство гордости за российскую физическую науку, гуманизм;
- положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России мира, понимание ответственности за состояние природных ресурсов и разумное

природопользование.

Метапредметные результаты: 1) Регулятивные УУД: Обучающийся сможет:

- самостоятельно определять цели, ставить и формулировать собственные задачи в

образовательной деятельности и жизненных ситуациях;

- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.
 - 2) Познавательные УУД:

Обучающийся сможет:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить не его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задачи;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные отношения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).
 - 3) Коммуникативные УУД:

Обучающийся сможет:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использование адекватных (устных и письменных) языковых средств;
- распознавать конфликтные ситуации и предотвращать конфликты до их активной фазы;

- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения выпускниками средней школы программы по физике на базовом уровне являются:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания, о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- _ владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества, элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования; владение умениями описывать и объяснять самостоятельно проведенные эксперименты, анализировать результаты полученной из экспериментов информации, определять достоверность полученного результата;
- умение решать простые физические задачи;
- -сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияние их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- сформировнность собственной позиции по отношению к физической информации, получаемой из разных источников.

Критерии и нормы оценки знаний учащихся

Оценка устных ответов учащихся

Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.

Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики; не препятствует дальнейшему усвоению программного материала, умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой и одной негрубой ошибки, не более двухтрех негрубых недочетов.

Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.

Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.

Оценка письменных контрольных работ

Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной ошибки и одного недочета, не более трех недочетов.

Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех-пяти недочетов.

Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 работы.

Оценка 1 ставится за работу, невыполненную совсем или выполненную с грубыми ошибками в заданиях.

Оценка лабораторных работ

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.

Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.

Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.

Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.

Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.

Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда

Для реализации рабочей программы используется учебно-методический комплект:

- 1.Учебник: «Физика 10 класс», Г.Я.Мякишев, Б.Б.Буховцев, Н.Н. Сотский
- 2.Поурочные разработки 10 класс, автор Ю.А. Сауров, Москва, «Просвещение», 2017г
- 3. Сборник задач по физике 10 -11 классы. Автор Н.А. Парфентьева, М, Просвещение, 2020г
- 4.«Физика» контроль знаний, умений и навыков 10-11 класс. Книга для учителя, авторы В.А.Заботин, В.Н. Комиссаров, Москва, «Просвещение», 2008г
- 5. Цифровое оборудование центра « Точка роста»

Лист внесения изменений и дополнений

Дата	Содержание изменений	Причина	Примечание

	<u></u>